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Abstract--A theoretical analysis of the influence of the direction of the interphase mass transfer on the 
rate of mass transfer is developed. The case of mass transfer between a solid plane surface and a fluid or 
gas flow in a boundary layer approximation is studied when the transport o(mass and momentum at the 
phase boundary are coupled to account for non-linear effects in a direction normal to the main flow. 

Numerical results are reported and discussed. 

1. INTRODUCTION 

RECENTLY it was shown that  according to the linear 
theory of  mass transfer, the rate of  mass transfer does 
not depend on the direct ion of  the in terphase  t ransfer  

[1,21. 
The theoretical  analysis of  systems with intensive 

mass t ransfer  [3-5] indicates tha t  the large mass fluxes 
can initiate secondary flows colinear with the direction 
of mass transfer.  F r o m  this it follows tha t  a change 
in the direct ion of  the interphase t ransfer  could induce 
a change in the hydrodynamic  flow and  the rate of  
mass transfer.  

The purpose of  this study is to report  a theoretical 
analysis of  the influence of  the direct ion of  the inter- 
phase t ransfer  on  the rate of  mass t ransfer  between a 
smooth  solid surface and  a fluid or gas flowing past 
it. Numerical  results for the rate of  mass  t ransfer  in 
the approx imat ion  of  a diffusive bounda ry  layer [1,6] 
will be presented and discussed. 

2. THE MATHEMATICAL MODEL 

The mass flux, J, across a plane surface of  length L 
is defined [1] by the average value of  the local mass 
flux I 

J = M k ( c * - c o )  = ~ I d x  (1) 

where the local diffusive mass flux, I, across the phase 
boundary ,  y = O, according to the non- l inear  theory 

of  mass transfer,  has both  a diffusive and  a convective 
componen t  

Pc MDp*  ~c 
I =  - . ! I D - , - + M c * v n  . . . . .  ~ - .  v = 0 .  

~v p,,* rv  

(2) 

In equat ion  (2) t',, is the normal  componen t  of  the 
velocity' at the phase boundary ,  y = 0, and it is deter- 
mined [3-5, 7] by the diffusive c o m p o n e n t  of  the mass 
flux 

M D  &' 
v .  = - v =  0 .  ( 3 )  p,*~ &.'  

In equa t ion  (3) vo can be considered as similar to 
the rate of  the Stefan flux but t,, does not  result from 
a phase change. It can also be though t  of  as an ana- 
logue to the local velocity of sucking or blowing from 
or into the laminar  boundary  layer [8] if the latter is 
limited by the mass t ransfer  in the layer, 

The analysis of  equa t ion  (2) shows that  the local 
mass flux, and  consequently,  the rate of  mass transfer  
depend on two f a c t o r s - - t h e  mass concent ra t ion  and  
the concen t ra t ion  gradient  at the phase boundary .  
The influence of  the mass concent ra t ion  at the phase 
boundary  in the presence of  a reversible process there 
(c* = 0) is expressed by 

p * J l c  * 
- -  = 1 + - -  ( 4 )  p~ p~ 

The above  effect is of  practical significance when 
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NOMENCLATURE 

a0, a ~, a., constants,  see equation (15a) 
c concentrat ion of the diffusing species 

[kg mol m -  3] 
D diffusivity of the diffusing species [m-" s -  t] 
f non-dimensional  function, see equat ion 

(16a) 
I local mass flux [kg (m 2 s ) -  ~] 
J average mass flux [kg (m-' s) - t] 
k mass transfer coefficient [m s -  '] 
L length of  mass transfer surface [m] 
M molecular mass of the diffusing species 

[kg kg m o l -  i] 
outward normal to the surface y = 0 [m] 
velocity in the x-direct ion [m s -  t] 
velocity in the ),-direction [m s -  ~] 
downflow coordinate [m] 
coordinate,  normal to the flow [m] 
Peclet number for the diffusing species, 
see equation (12b) 

Sc Schmidt number  for the diffusing species, 
see equation (9f) 

Sh Sherwood number  for the diffusing 
species, see equations (7) and (12a) 

n 
U 

U 

X 

Y 
Pe 

Greek symbols 
g Sc °.5 

( non-dimensional coordinate,  see 
equation (16b) 

q non-dimensional  coordinate,  see 
equation (9d) 

0 non-dimensional parameter ,  see 
equation (13) 

/~ dynamic viscosity [kg (m s)-  '] 
v kinematic viscosity [m z s -  '] 
p mass density [kg m -  3] 

non-dimensional function, see equations 
(9a) and (9b) 

W non-dimensional  function, see equation 
(9c). 

Subscripts 
0 initial value 
n colinear with the outward normal.  

Superscript 
* equilibrium value. 

g c *  
- -  > 10  - 2 .  ( 5 )  p* 

When the process is irreversible (c* = 0) it is theo- 
retically absent. Obviously,  this effect cannot  depend 
on the direction of  mass transfer. The concentrat ion 
gradient  at the phase boundary,  i 

gc 
i=~yy ,  y = 0  (6) 

depends on the hydrodynamics  and thus it changes if 
a change of  the direction of mass transfer occurs 
because from equat ion (3) it follows that  a change of  
the sign of  i results in a change of the sign of  vn. 

F rom equations (1) and (2) it follows directly that  

k L  p* 1 ('L gc 
. . . .  J0~dx ,  y = 0  (7) Sh O p* c* - Co 

where c ( x , y )  is the corresponding component  of the 
solution of  the following non-linear boundary  value 
problem : 

gu ~u ~2u 
tt -g-- + U -g- ~- V ~ y 2  ; 

c x  cy  

~u &' 
- -  + =- -=  0" 
gx  cy  ' 

~c ~c ~ ' c  
u T -  + v - a -  = D-z-w;  

cx  cy  cy- 

U -~ Uo; 

x > 0, y > 0 (Sa) 

x > 0, y > 0 (8b) 

x > 0, y > 0 (8c) 

x = 0, y > 0 (8d) 

c = Co; x = 0, y > 0 (Be) 

u = 0 ;  x > 0 ,  y = 0 (8 f )  

c = c*; x > 0, y = 0 (8g) 

M D  gc 
. . . .  x > 0 ,  y = 0  (8h) v =  p,~ gy ,  

u = u0; x > 0 ,  y = m (8i) 

c = Co; x > 0, y = vo. (Sj) 

The problem, equat ion (8), can be cast into a non- 
dimensional form introducing the following variables 
and parameters  : 

u = 0.5u0eO' (9a) 

/ v\O, 5 

c = Co+ ( c * - c 0 ) q  ~ (9c) 

/Uo/°., 
rl = Y ~ - ~ x )  (9d) 

= Sc o. 5 (%) 

Sc = v/D (9f) 

where q is the new independent variable, O(q) and 
W(q) the dependent  ones, and Sc the Schmidt number. 
After inserting equation (9) into equation (8) and 
some s tandard manipulat ions,  one is lead to the fol- 
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lowing non- l inea r  two-po in t  b o u n d a r y  value p rob l em 
for a sys tem o f  o rd ina ry  differential  equa t ions  : 

• '" + e,- ~qbqb" = 0 ; q > 0  (10a) 

T " + e ,  qbT" = 0;  r / >  0 (10b) 

kb(0) = 0T ' (0 )  : q = 0 (It)c) 

¢~'(0) = 0:  q = 0 (10d) 

q-'(0) = 1; q = 0 (10e) 

( D ' ( z c ) = 2 g - ' :  q =  ~ (10f) 

q~(cc) = 0;  r / =  ~ (10g) 

where  a pr ime deno te s  d i f ferent ia t ion  in r / a n d  

M ( c * - c o )  
o - ( l i )  

The  S h e r w o o d  number ,  def ined by equa t ion  (7) can  
be ca lcula ted  as 

SD P* Pe °s q2'(0) (12a) 
p* 

where  Pc, is the Peclet  number ,  def ined by 

uoL 
Pe = ~ - .  (12b) 

F r o m  e qua t i on  (12a) it fo l lows tha t  a change  o f  
the d i rec t ion  o f  the in te rphase  mass  t r ans fe r  could  

inf luence the rate  o f  mass  t ransfer  only  t h r o u g h  the 
n o n - d i m e n s i o n a l  diffusive flux W(0) .  The  value o f  the 
lat ter  is a func t ion  o f  ~ and  0. 

W h e n  the non- l inea r  effects are pract ical ly  sig- 
nificant 

M ( c * - c o )  
0 -  > 10 -2 (13) 

the sign o f  0 is d e t e r m i n e d  by the d i rec t ion  o f  mass  
t ransfer .  Set t ing Ac = c * - c 0 ,  if  Ac > 0 the mass  
t ransfer  is f rom the solid surface,  while i f ,Sc  < 0 it is 
t owa r ds  the surface.  

1.0 P 

[ l e i.o.31-o2i-o, o ion, i to,' ' ' o oo3 o, I I 
o e l \ l ' l  ' '  i 2 0  I! 

I 1 
8 

2 4 6 

FIG. I. 

3. Q U A N T I T A T I V E  A N A L Y S I S  

T h e  quan t i t a t ive  theoret ical  analysis  o f  the influ- 
ence o f  the d i rec t ion  o f  mass  t ransfer  on  the rate  o f  
mass  t r ans fe r  was  p e r f o r m e d  on the basis  o f  numerica l  
results  for  T ' ( 0 )  c o m p u t e d  f rom equa t ions  (10), util- 
izing a code  for  the numer ica l  in tegra t ion  o f  two-po in t  

b o u n d a r y  value p r o b l e m s  for  sys tems o f  o rd ina ry  
different ial  equa t ions  on  semiinf ini te  intervals  [9]. The  
results  are listed in Table  1 and  p lo t ted  on Figs. 1-3. 

The  da t a  for  T ' (0 ) ,  Table  1 and  Fig. 1. show that  
if e is increased ,  the concen t r a t i on  g rad ien t  at the 
phase  b o u n d a r y ,  the S h e r w o o d  number ,  respectively,  
is decreased .  This  is na tura l  as far as it c o r r e s p o n d s  
to a decrease  o f  the diffusivity (an increase o f  the 

viscosity) .  
T h e  veloci ty and  c o n c e n t r a t i o n  profiles are shown  

on Figs.  2 and  3, respectively,  for gas (;, = 1) and 
l iquid (e = 20). 

Table I 

= 0.1 e = 1.0 e = 2.0 e = 10.0 ~: = 20.0 
0 @"(o) -'-I-"(o) 4)"(0) - q."(o) 4)"(0) - w ( o )  @"(o) -W(o)  (b"(o~ -'-p'(o) 

0.0 133.0 1.03 1.33 0.664 0.332 0.535 0.0133 0.314 0.00333 0.250 
0.03 128.0 1,03 1.30 0.650 0.327 0.515 0.0137 0.270 0.00332 0.190 

-0 .03  137.0 1.04 1.36 0.679 0.338 0.553 0.0135 0.384 0.00338 0.406 
0.05 126.0 1.03 1.28 0.641 0.323 0.503 0.0131 0.248 0.00332 0.166 

-0 .05  140.0 1.04 1.38 0.689 0.342 0.572 0.0136 0.459 . . . .  
0.I0 118.0 1.02 1.24 0.620 0.315 0.475 0.0130 0.207 - -  - 

- 0 .10  148.0 1.04 1.43 0.716 0.354 0.616 . . . .  
0.20 105.0 1.01 1.16 0.581 0.301 0.429 0.0128 0.160 

-0 .20  164.0 1.06 1.56 0.779 0.386 0.736 . . . . .  
0.30 91.4 0.995 1.10 0.548 0.291 0.393 - -  - -  

-0 .30  181.0 1.07 1.71 0.855 0.437 0.936 - -  - -  
~+: 0.3 2.0 3.0 3.0 5.0 3.0 30.0 5.0 50.0 70 
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0 
No. 1 2 3 5 6 7 

0 -0.,3 -0 .2  -0.1 0.1 0.2 0.3 

- 0 . 5  

FtG. 2. 

From Table 1 and Figs. 1-3 it is seen that the 
change of the direction of  mass transfer (the sign of 0) 
influences the value of the concentration gradient at 
the phase boundary tP'(0), and consequently the mass 
transfer coefficient k or S h .  When the mass transfer is 
from the phase boundary to the main flow (0 > 0), 
the non-linear effects result in lower mass transfer 
coefficients, while if the mass transfer is from the main 
flow to the phase boundary (0 < 0) these effects result 
in higher mass transfer coefficients. For equal absolute 
values of 0, S h  increases more rapidly for 0 < 0 than 
it decreases for 0 > 0. 

The data from Fig. 1 show that changes of 0 prac- 
tically do not influence the thickness of the diffusive 
boundary layer and the effect of  the induced sec- 
ondary flow is significant only in a layer close to the 
phase boundary with thickness approximately one- 
third of the thickness of the diffusive boundary layer. 
The non-dimensional thickness of this 'layer of non- 
linear mass transfer', qo, can be determined approxi- 
mately from Fig. 1 for e = 1 and 20 

= 1, q0 = 1 (14a) 

= 20, qo = 2. (14b) 

t.o ~. 1 I . ~ /  

/ / / / /¢ 

~i' I-5 

I ""° I' t ' 1 3 1 " l ' l  _o./[ I e ~Q°31 ° i°°sl°'°~l °'1 I 

FIG. 3. 

The dimensional thickness 6o of this layer can be 
calculated by means of equation (9d) 

{4ox O, 
:.ot- o ) (14 ) 

The quantitative difference in the non-linear effects 
for equal in absolute values but of opposite sign par- 
ameters 0 is due to the fact that the velocity of the 
induced flow, v,, is higher for larger in absolute value 
but negative 0. This can be explained if one assumes 
(for small q in the 'layer of non-linear mass transfer') 
that the normal velocity is proportional to O. The 
latter quantity can be expressed as [8] 

rb(q)  = a o + a t r l + a ~ q  2 + . . .  (15a) 

By virtue of the boundary conditions, equations 
(10c)-(10e), one has 

0 ( o )  = o,v'(o) + _,' o" (o ) ,y  - ' ~ e  °) ,e'(o)~t 3 + . . .  

(15b) 

If @+ and ~_ denote two solutions for • cor- 
responding to 0 = 0o and -00(00 > 0) a t y  = 0, then 
the condition 

• ~ - * "  < O. (15c) 

is satisfied when 

• "(0) q3 < 1. (15d) 
6e 

From Table 1 and Figs. 1-3 it is seen that the 
condition, equation (15d), is satisfied always when r/is 
in the 'layer of non-linear mass transfer', see equation 
(14b). 

The influence of the change of sign of 0 on u or ~ ' ,  
see equations (%), (10c) and (13), is opposite to the 
one just described. The velocity u has higher values 
when 0 > 0. This shows that the non-linear effects 
result mainly from the normal velocity c,, that is from 
the induced flow but not from the global change of 
the velocity field following from it. 

The last line of Table 1 shows the values of r /for 
which the boundary conditions for • and ~ at infinity, 
equations (10f) and (10g) have been satisfied in the 
sense of the algorithm [9] to the accuracy required. 

4.  L I M I T I N G  C A S E S  

In Table 1 there are no values of~"(0) and ~P'(0) for 
large values of e and 0. They could not be computed 
utilizing the procedure [9] due to an increasing singu- 
lar perturbation (or stiffness) of the solution of the 
boundary value problem, equation (10). Such limiting 
cases cannot be described by the theory of diffusive 
boundary layers but they can be explained if in equa- 
tions (10) one introduces the following variables: 

O(q) = f ( O  (16a) 
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Introducing equations 
readily obtains 

= q/e. (16b) 

(16) into equations (10), one 

f ' " + f f "  = 0, { = 0 (17a) 

ud"+gfud" = 0, ~ > 0 (17b) 

f (0 )  = 0hv'(0), ~ = 0 (17c) 

f ' ( 0 )  = 0, ~ = 0 ( lVd) 

• (0) = 1, ~ = 0 (17e) 

f ' (~c )  = 2, ~ = ac (17f) 

~ ( zc )  = 0, ~ = ~ .  (17g) 

In equations (17) ~ << I when g >> 1 and therefore/"  
can be expressed by its McLorain series in the vicinity 
of  zero (see equation (I 7d)) 

In tile absence of non-linear effects (0 = 0) from 
equations (17) it follows that f (0 )  = 0 and the prob- 
lem always has a solution but when e >> 1. For  the 
latter case 

~J"(0)  = ~¢"(0)~'-  < 10 -2. (19) 

Consequently, W' = 0 and the problem is reduced to 
stationary diffusion in a solid. 

In the presence of  non-linear effects (0 = 0) from 
equations (17) it follows that f (0 )  = 0 and the prob- 
lem always has a solution except when 

f (0 )  >> ~f"(0) . (20) 

It is obvious, that in this case the diffusion is inde- 
pendent from the main hydrodynamic flow and from 
equations (I0) and (18) it follows that 

W'+e,0hu'(0)tP ' = 0, ~ > 0 (21a) 

• (0) = 0, ~ = 0 (21b) 

hu(vc) = 0. ~ = oo. (21c) 

The boundary value problem, equations (21), has no 
physically meaningful solution because a solution of 
the type 

ud = exp ( - e 0 W ( 0 ) ( )  (22a) 

does not satisfy the boundary conditions for 0 ~> 0 
(hu'(0) < 0), while if 0 < 0 equation (22a) satisfies 
equations (21) only if 

W(0) = - ~ 0 W ( 0 )  (22b) 

or, equivalently, e0 = - 1 .  The last relation has no 
physical meaning in the boundary layer theory. It 
is possible that in this particular case the secondary 
induced flow, resulting from the non-linear mass 

transfer, dominates significantly the main flow and its 
convective transfer is the one that limits the process. 
If this is the case, it could generate process instability' 
but the latter cannot be described in the approxi- 
mation of  the diffusive boundary layer theory and is 
a subject of  a separate study. 

5. C O N C L U S I O N S  

The above theoretical analysis of the influence of  
the intensive mass transfer on the rate of mass transfer 
leads to some new conclusions concerning the 
phenomenon of non-linear mass transfer. 

(1) The mass flux through the phase boundary is 
determined by two independent fac tors - - the  con- 
centration gradient and the concentration of  the spec- 
ies transported. The second one does not depend on 
the direction of  mass transfer, while in the presence 
of  an irreversible process the phase boundary does 
not exist. 

(2) In the presence of  a reversible process the effect 
of  the concentration can dorninate the effect of  the 
concentration gradient. 

(3) The change of  the direction of mass transfer can 
influence the rate of  mass transfer. The latter is higher 
(lower) than the one predicted by the linear theory, 
when the direction of  mass transfer is to (from) the 
phase boundary. 

(4) The decrease of  the rate of  mass transfer in the 
presence of  intensive transfer from the phase bound- 
ary to the main rio',,, is a new effect which cannot be 
predicted qualitatively from the non-linear theory of  
mass transfer. 

(5) The change of  the rate of  mass transfer resulting 
from a change of  the direction of the intensive mass 
transfer is due, most of  all, to the convective effect of 
the secondary induced flow. This effect is significant 
close to the phase boundary inside the 'layer of  non- 
linear mass transfer" of  thickness approximately one- 
third of  the thickness of  the diffusive boundary layer. 

(6) The non-linear theory of mass transfer cannot 
predict the rate of  mass transfer for xery large Schmidt 
numbers (diffusion in a solid) or in the presence of 
very high concentration gradients. In the latter case 
the secondary induced flow fully dominates the main 
flow and the approximations of  the theor,', of  the 
diffusive boundary layer are not valid. 
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INFLUENCE DU TRANSFERT DE MASSE A L'INTERPHASE SUR LE FLUX DE 
MASSE--I.  LE SYSTEME "'SOLIDE-FLUIDE (GAZ)'" 

R6sum6----On d6veloppe une analyse th~orique de l'inftuence de la direction du transfert de masse 5. 
rinterphase sur le flux massique. Le cas du transfert de masse entre une surface plane solide et un fluide ou 
un gaz dans une approximation de couche limite est &udi6 lorsque les transferts de masse et de quanti6 de 
mouvement 5. la fronti6re de phase sont coupl6s pour tenir compte des effets non lin~aires darts une direction 

normale 5. l'6coulement principal. Des r6sultats num6riques sont rapport6s et discut6s. 

EINFLUSS DES STOFFTRANSPORTS AN DER PHASENGRENZE AUF DIE 
GESCHWINDIGKEIT DER STOFF(3BERTRAGUNG--I ,  DAS SYSTEM 

FESTKORPER-FLUID (GAS) 

Zusammenfassung--Der EinfluB der Richtung des Stofftransports an der Phasengrenzfliiche auf die 
Geschwindigkeit des Stofffibergangs wird theoretisch untersucht. Der Stofftransport zwischen einer festen 
ebenen Oberfl/iche und einer Fluid- oder Gasstr6mung wird unter Anwendung der Grenzschichtn/iherung 
analysiert, und zwar fiJr den Fall, dab Stoff- und Impulstransport an der Phasengrenze gekoppelt sind. 
Dadurch werden nicht-lineare Effekte in einer Richtung senkrecht zur Hauptstr6mung berficksichtigt. 

Die numerischen Ergebnisse werden vorgestellt und diskutiert. 

BJIH~IHHE HAHPABJ'IEHH~I MACCOHEPEHOCA HA EFO CKOPOCTb--I .  CHCTEMA 
~TBEP,/IOE TE,IIO--)KH~KOCTb (FA3)" 

/AJmoTam~---TeopeTHtlecKH aHaJIH3HpTL~rcH BJIHgHHe HanpaBJleHHs MacconepeHoca Ha Me)z~a3nofi 
-~paHHUe Ha ero CKOpOCTb. C HeJlblO y~CTa pacnpocTpaHenH~ ~bdpc~Tos e HanpaB.q~HHH, nepneH~zH- 
-~y~spnoM OCHOBHOMy TeqeHmo, Hcc~eayevea c~yqai~ Macconepenoca/~e~y TBepD.ofi/nnocxofi noaepx- 

HOC'rbIO I4" T~qCHH~M )KK~YW ~ ~ l ~ l ~  n/oEpfl~wlqnoro cJIo~l npH B3aHMO¢.~I3aHHOM 
ncpeHOCe M a ~ c ~ M ~ t l ~ n y Y l ~ ~ a 3 n o ~  rpaHnl~J, l-lpnstbn~vca H o6CT~KIIaIOTC~I-qHC.JIeHHHe pc3yJlb- 

TaTb/ HeP..JIe~OBaHH$L 


