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Abstract—A theoretical analysis of the influence of the direction of the interphase mass transfer on the

rate of mass transfer is developed. The case of mass transfer between a solid plane surface and a fluid or

gas flow in a boundary layer approximation is studied when the transport of mass and momentum at the

phase boundary are coupled to account for non-linear effects in a direction normal to the main flow.
Numerical results are reported and discussed.

1. INTRODUCTION of mass transfer, has both a diffusive and a convective
component
RECENTLY it was shown that according to the linear
theory of mass transfer, the rate of mass transfer does ‘e " MDp* ic
- . . I=—-MD ~+Mc*r,= ——7——. r=0
not depend on the direction of the interphase transfer ‘v pxooy o
[1,2].

5
The theoretical analysis of systems with intensive )

mass transfer [3—5] indicates that the large mass fluxes
can inttiate secondary flows colinear with the direction
of mass transfer. From this it follows that a change
in the direction of the interphase transfer could induce
a change in the hydrodynamic flow and the rate of
mass transfer. MD e

The purpose of this study is to report a theoretical tg=—— 2. y=0 3
analysis of the influence of the direction of the inter- po €
phase transfer on the rate of mass transfer between a
smooth solid surface and a fluid or gas flowing past
it. Numerical results for the rate of mass transfer in
the approximation of a diffusive boundary layer [1, 6]
will be presented and discussed.

In equation (2) ¢, is the normal component of the
velocity at the phase boundary, y = 0, and it is deter-
mined [3-5, 7] by the diffusive component of the mass
flux

In equation (3) r, can be considered as similar to
the rate of the Stefan flux but ¢, does not result from
a phase change. It can also be thought of as an ana-
logue to the local velocity of sucking or blowing from
or into the laminar boundary layer [8] if the latter is
limited by the mass transfer in the layer.

The analysis of equation (2) shows that the local

2. THE MATHEMATICAL MODEL mass flux, and consequently, the rate of mass transfer
depend on two factors—the mass concentration and

The mass flux, J, across a plane surface of length L the concentration gradient at the phase boundary.
is defined [1] by the average value of the local mass  The influence of the mass concentration at the phase

flux boundary in the presence of a reversible process there
. (c* = 0) is expressed by
1
J = Mk(c*—c,) = ZJ; Idx (1) p* | Mc* @
i 23

where the local diffusive mass flux, 7, across the phase
boundary, y = 0, according to the non-linear theory The above effect is of practical significance when
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NOMENCLATURE
aq a,.a, constants, see equation (15a) Greek symbols
¢ concentration of the diffusing species £ Sc®*
[kgmolm™?] ¢ non-dimensional coordinate, see
D diffusivity of the diffusing species [m*s~'] equation (16b)
f non-dimensional function, see equation n non-dimensional coordinate, see
(16a) equation (9d)
local mass flux (kg (m?s)~'] 0 non-dimensional parameter, see

average mass flux [kg (m?s)~']

I

J

k

L length of mass transfer surface [m)
M

equation (13)

mass transfer coefficient [ms™'] u dynamic viscosity [kg (ms)~']
v kinematic viscosity [m*s™']
molecular mass of the diffusing species P mass density [kgm™?]
[kgkgmol™] @ non-dimensional function, see equations
n outward normal to the surface y = 0 [m} (9a) and (9b)
u velocity in the x-direction [ms™'] b non-dimensional function, see equation
v velocity in the y-direction [ms™!) (9¢).
x downflow coordinate [m]
y coordinate, normal to the flow [m} Subscripts
Pe  Peclet number for the diffusing species, Py
. 0 initial value
see equation (12b) n colinear with the outward normal
Sc Schmidt number for the diffusing species, ’
see equation (9f)
Sh Sherwood number for the diffusing Superscript
species, see equations (7) and (12a) * equilibrium value.
*
A’;i > 1072, ) ¢ =co; x=0,y>0 (8¢)
. .0 . - u=90; x>0,y=0 (8)
When the process is irreversible (¢* = 0) it is theo-
retically absent. Obviously, this effect cannot depend c=c*; x>0,y=0 8g)
on the direction of mass transfer. The concentration MD &
: MD éc
gradient at the phase boundary, i = 1 E;; x>0,y=0 (8h)
. _dc .
,=@, y=0 (6) u=ugy, x>0,y=x (81)
C=Co; x>0,y= 0. 8

depends on the hydrodynamics and thus it changes if
a change of the direction of mass transfer occurs
because from equation (3) it follows that a change of
the sign of i results in a change of the sign of v,.
From equations (1) and (2) it follows directly that

kL p* 1 Lée
T ——— = e e— — Q) ) = 7
=D pzc*—CoL e O

where ¢(x, y) is the corresponding component of the
solution of the following non-linear boundary value
problem:

¢ o2
u—f—g vTu=V.?; x>0,y>0 (8a)
ix cy y?
cu ¢v
E Cry=0, x>0,y>0 (8b)
éc éc ¢
- r—=D-=; x>0,y>0 (8(:)
Cx Gy oy’
u=ugy,; x=0,y>0 (8d)

The problem, equation (8), can be cast into a non-
dimensional form introducing the following variables
and parameters:

1 = 0.5uqed” (9a)
o= 0.5(?3—”)0‘5(@'—(1)) (9b)
¢ = Cot(c*—co)¥ %)
" =y<£;)o'5 o)
£ = ¢ 9e)
Sc=v/D )]

where n is the new independent variable, ®() and
¥ (n) the dependent ones, and Sc the Schmidt number.
After inserting equation (9) into equation (8) and
some standard manipulations, one is lead to the fol-
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lowing non-linear two-point boundary value problem
for a system of ordinary differential equations:

O "+ '@d" =0; >0 (10a)
V' +edW¥ =0; n>0 (10b)
®(0) = ¥(0): n=20 (10c)
O'(0)=0;: n=>0 (10d)
Y0) =1; n=>0 (10e)
®'(x)=2""; n= (10F)
W(c) =0 n = (10g)
where a prime denotes differentiation in 5 and
0= :V(i*;_ o) (1)
ple

The Sherwood number, defined by equation (7) can
be calculated as

Y s
Sh="_per wr(0)

(12a)
0
where Pe is the Peclet number, defined by
pe =k (12b)
e=—"7 2

From equation (12a) it follows that a change of
the direction of the interphase mass transfer could
influence the rate of mass transfer only through the
non-dimensional diffusive flux ¥’(0). The value of the
latter is a function of ¢ and 6.

When the non-linear effects are practically sig-
nificant

M(c*—cg)

= >10-?
pie

(13)

the sign of 0 is determined by the direction of mass
transfer. Setting Ac = ¢*—c,, if Ac >0 the mass
transfer is from the solid surface, while if Ac < 0 it is
towards the surface.
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3. QUANTITATIVE ANALYSIS

The quantitative theoretical analysis of the influ-
ence of the direction of mass transfer on the rate of
mass transfer was performed on the basis of numerical
results for ¥'(0) computed from equations ¢10), util-
izing a code for the numerical integration of two-point
boundary value problems for systems of ordinary
differential equations on semiinfinite intervals [9]. The
results are listed in Table 1 and plotted on Figs. [-3.

The data for W'(0), Table | and Fig. I. show that
if & is increased. the concentration gradient at the
phase boundary, the Sherwood number. respectively.
is decreased. This is natural as far as it corresponds
to a decrease of the diffusivity (an increase of the
viscosity).

The velocity and concentration profiles are shown
on Figs. 2 and 3, respectively, for gas (¢ = 1) and
liquid (& = 20).

Table 1
e=0.1 e=1.0 e=2.0 e =10.0 =200

f d"(0) —~¥(0) ¢7(0) —¥'(0) O (0) —¥(0) d"(0) —¥'(0) D"(0) ~¥(0)

0.0 133.0 1.03 1.33 0.664 0.332 0.535 0.0133 0.314 0.00333  0.230

0.03 128.0 1.03 1.30 0.650 0.327 0.515 0.0137 0.270 0.00332  0.190
—0.03 137.0 1.04 1.36 0.679 0.338 0.553 0.0135 0.384 0.00338  0.406

0.05 126.0 1.03 1.28 0.641 0.323 0.503 0.0131 0.248 0.00332  0.166
—0.05 140.0 1.04 1.38 0.689 0.342 0.572 0.0136 0.459 — —

0.10 118.0 1.02 1.24 0.620 0.315 0.475 0.0130 0.207 — -
-0.10 148.0 1.04 1.43 0.716 0.354 0.616 — — — —

0.20 105.0 1.01 .16 0.581 0.301 0.429 0.0128 0.160 — —
-0.20 164.0 1.06 1.56 0.779 0.386 0.736 — — — —

0.30 91.4 0.995 1.10 0.548 0.291 0.393 — — — —
—0.30 181.0 1.07 1.71 0.835 0.437 0.936 — — — -

+* 0.3 2.0 30 30 5.0 3.0 30.0 5.0 50.0 7
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From Table 1 and Figs. 1-3 it is seen that the
change of the direction of mass transfer (the sign of 6)
influences the value of the concentration gradient at
the phase boundary ¥’(0), and consequently the mass
transfer coefficient k or Sh. When the mass transfer is
from the phase boundary to the main flow (6 > 0),
the non-linear effects result in lower mass transfer
coefficients, while if the mass transfer is from the main
flow to the phase boundary (6 < 0) these effects result
in higher mass transfer coefficients. For equal absolute
values of 0, Sh increases more rapidly for # < 0 than
it decreases for 6 > 0.

The data from Fig. 1 show that changes of 0 prac-
tically do not influence the thickness of the diffusive
boundary layer and the effect of the induced sec-
ondary flow is significant only in a layer close to the
phase boundary with thickness approximately one-
third of the thickness of the diffusive boundary layer.
The non-dimensional thickness of this ‘layer of non-
linear mass transfer’, n,, can be determined approxi-
mately from Fig. 1 fore = 1 and 20

e=1, =1 (14a)
e=20, ny=2. (14b)
10
1 1
2 2
3 3
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The dimensional thickness d, of this layer can be
calculated by means of equation (9d)

4Dx\:?
0o = ’Io( i ) .

The quantitative difference in the non-linear effects
for equal in absolute values but of opposite sign par-
ameters 6 is due to the fact that the velocity of the
induced flow, v,, is higher for larger in absolute value
but negative 8. This can be explained if one assumes
(for small # in the ‘layer of non-linear mass transfer’)
that the normal velocity is proportional to ®. The
latter quantity can be expressed as [8]

(14¢)

O(n) = ap+an+ay’+ - (15a)

By virtue of the boundary conditions, equations
(10c)-(10¢), one has

o"(0)

D(0) = 0¥’(0) + 10"(0)n* — 7

¥+

(15b)

If ®_. and ®_ denote two solutions for ® cor-
responding to 8 = f,and —0,(0, > 0) at y = 0, then
the condition

O —@2 <0, (15¢)

is satisfied when

@ (0)

3
Ce n’ < 1.

(15d)
From Table 1 and Figs. 1-3 it is seen that the
condition, equation (15d), is satisfied always when 7 is
in the ‘layer of non-linear mass transfer’, see equation
(14b).

The influence of the change of sign of # on u or ¢,
see equations (9a), (10c) and (13), is opposite to the
one just described. The velocity u has higher values
when @ > 0. This shows that the non-linear effects
result mainly from the normal velocity t, that is from
the induced flow but not from the global change of
the velocity field following from it.

The last line of Table 1 shows the values of 5 for
which the boundary conditions for ® and ‘¥ at infinity,
equations (10f) and (10g) have been satisfied in the
sense of the algorithm [9] to the accuracy required.

4. LIMITING CASES

In Table 1 there are no values of ®”(0) and ¥’(0) for
large values of ¢ and 6. They could not be computed
utilizing the procedure [9] due to an increasing singu-
lar perturbation (or stiffness) of the solution of the
boundary value problem, equation (10). Such limiting
cases cannot be described by the theory of diffusive
boundary layers but they can be explained if in equa-
tions (10) one introduces the following variables:

() = f(§) (16a)
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{ = nle. (16b)

Intreducing ¢guations (16) into equations (10), one
readily obtains

SUHf=0, (=0 (17a)
¥ ref¥ =0, >0 (17b)
S0) =60%(0), (=0 (172)
S0 =0, {=0 (17d)
Y(0) =1, {=0 (17¢)
flw) =2, (= (17f)
Y(x) =0, {= . (17g)

In equations (17) { « | when ¢ » 1 and therefore f

can be expressed by its McLorain series in the vicinity
of zero (see equation (17d))

. (1Y
S =) +3f (0)<;>+-~ (13)
In the absence of non-linear effects (0 = 0) from
equations (17) it follows that f(0) = 0 and the prob-
lem always has a solution but when ¢ » 1. For the
latter case

2
§sf"(0)<g> =L (O)> <1072 (19)
Consequently, " = 0 and the problem is reduced to
stationary diffusion in a solid.
In the presence of non-linear effects (8 = 0) from
equations {17) it follows that f(0) = 0 and the prob-
lem always has a solution except when

2
10> éf”(0)<g> : (20)
It is obvious, that in this case the diffusion is inde-
pendent from the main hydrodynamic flow and from
equations (10) and (18) it follows that

Y4+ eV (O =0, (>0 (21a)
W 0) =0, (=0 (21b)
Y(w) = 0. {=oo. (21c)

The boundary value problem, equations (21), has no
physically meaningful solution because a solution of
the type

Y = exp (-8 (0)0) (22a)

does not satisfy the boundary conditions for 6 > 0
(W(0) < 0), while if 0 <0 equation (22a) satisfies
equations (21) only if

Y(0) = —e0W(0) (22b)

or, equivalently, e = —1. The last relation has no
physical meaning in the boundary layer theory. It
is possible that in this particular case the secondary
induced flow, resulting from the non-linear mass
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transfer, dominates significantly the main flow and its
convective transfer is the one that limits the process.
If this is the case, it could generate process instability
but the latter cannot be described in the approxi-
mation of the diffusive boundary layer theory and is
a subject of a separate study.

5. CONCLUSIONS

The above theoretical analysis of the influence of
the intensive mass transfer on the rate of mass transfer
leads to some new conclusions concerning the
phenomenon of non-linear mass transfer.

(1) The mass flux through the phase boundary is
determined by two independent factors—the con-
centration gradient and the concentration of the spec-
ies transported. The second one does not depend on
the direction of mass transfer, while in the presence
of an irreversible process the phase boundary does
not exist.

(2) In the presence of a reversible process the effect
of the concentration can dominate the effect of the
concentration gradient.

(3) The change of the direction of mass transfer can
influence the rate of mass transfer. The latter is higher
(tower) than the one predicted by the linear theory.
when the direction of mass transfer is to (from) the
phase boundary.

(4) The decrease of the rate of mass transter in the
presence of intensive transfer from the phase bound-
ary to the main flow is a new effect which cannot be
predicted qualitatively from the non-linear theory of
mass transfer.

(5) The change of the rate of mass transfer resulting
from a change of the direction of the intensive mass
transfer is due, most of all, to the convective effect of
the secondary induced flow. This effect is significant
close to the phase boundary inside the ‘layer of non-
linear mass transfer’ of thickness approximately one-
third of the thickness of the diffusive boundary layer.

(6) The non-linear theory of mass transfer cannot
predict the rate of mass transfer for very large Schmidt
numbers (diffusion in a solid) or in the presence of
very high concentration gradients. In the latter case
the secondary induced flow fully dominates the main
flow and the approximations of the theory of the
diffusive boundary layer are not valid.
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INFLUENCE DU TRANSFERT DE MASSE A L'INTERPHASE SUR LE FLUX DE
MASSE—I. LE SYSTEME "SOLIDE-FLUIDE (GAZ)"

Résumé—On développe une analyse théorique de I'influence de la direction du transfert de masse a

Pinterphase sur le flux massique. Le cas du transfert de masse entre une surface plane solide et un fluide ou

un gaz dans une approximation de couche limite est étudi¢ lorsque les transferts de masse et de quantié de

mouvement 4 la frontiére de phase sont couplés pour tenir compte des effets non linéaires dans une direction
normale 4 I'écoulement principal. Des résultats numériques sont rapportés et discutés.

EINFLUSS DES STOFFTRANSPORTS AN DER PHASENGRENZE AUF DIE
GESCHWINDIGKEIT DER STOFFUBERTRAGUNG—I. DAS SYSTEM
FESTKORPER-FLUID (GAS)

Zusammenfassung—Der EinfluB der Richtung des Stofftransports an der Phasengrenzfiiche auf die

Geschwindigkeit des Stoffiibergangs wird theoretisch untersucht. Der Stofftransport zwischen einer festen

ebenen Oberfliche und einer Fluid- oder Gasstrdmung wird unter Anwendung der Grenzschichtniherung

analysiert, und zwar fiir den Fall, daB Stoff- und Impulstransport an der Phasengrenze gekoppelt sind.

Dadurch werden nicht-lineare Effekte in einer Richtung senkrecht zur Hauptstromung beriicksichtigt.
Die numerischen Ergebnisse werden vorgestellt und diskutiert.

BJIMAHUE HAMPABJEHUA MACCOITEPEHOCA HA EI0O CKOPOCTb—!. CUCTEMA
“TBEPAOE TEJO-XHUIKOCTS (TA3)”

AunoTamms—TeOPeTHYECKH aHANH3HPYETCA BJIMAHHE HANpPAaBJICHHA MAacCONepeHoca Ha MexdasHoi
~fpaHHNe Ha ero ckopocth. C HENBIO Yy4eTa PAcHpPOCTPaHEHHA PdeKTOB B HANPAaBJISHHH, NEPOEHIH-
“KyAPHOM OCHOBHOMY TEYEHHIO, ncc{rlenyercu Cny4a# Macconepenoca /ﬁemy TBepAoH/MI0CKO# nosepx-
HOCTHIO M TEYCHHEM XHIKOCTH WY Ta3a—8 Npabo NO[P3HHYHOTO CJIOA NMPH BIAHMOCBA3AHHOM
nepeHoce MACTH MMy ibea y-MexkdaiHo rpanuunl. [IpHBOIATCA B 06CYKIAIOTCH- YHCIICHHBIE PE3YJib-

) aThl HCClieNOBaHMS.



